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13.1. Harmonic function in the disk

Let D := {x2 + y2 < 1}. Find the solution to the following problem{
∆u = 0, for (x, y) ∈ D,

u(x, y) = x3 + x, for (x, y) ∈ ∂D.

Hint: It holds cos(θ)3 = 1
4(3 cos(θ) + cos(3θ)).

Let us consider the polar coordinates (x, y) = (r cos(θ), r sin(θ)). Let us begin, by
writing the boundary condition in polar coordinates and exploiting the hint

u(x, y) = x3+x = cos(θ)3+cos(θ) = 1
4(3 cos(θ)+cos(3θ))+cos(θ) = 7

4 cos(θ)+1
4 cos(3θ) .

Since r cos(θ) and r3 cos(3θ) are harmonic functions in the unit disk D, we deduce
that

u = 7
4r cos(θ) + 1

4r
3 cos(3θ)

is harmonic and satisfies the boundary condition, hence, by uniqueness, it must be
the only solution of the problem.

13.2. Harmonic function in the annulus

Find the solution to the following problem, posed for 2 < r < 4 and −π < θ ≤ π:
∆u = 0, for 2 < r < 4,

u(2, θ) = 0, for − π < θ ≤ π,
u(4, θ) = sin(θ), for − π < θ ≤ π.

We do separation of variables in polar coordinates. Namely, we express a general
solution w(r, θ) = R(r)Θ(θ), and we assume ∆w = 0. Recall that the Laplacian in
polar coordinates can be written as

∆w = wrr + 1
r
wr + 1

r2wθθ = 0.

Thus, in the annulus {2 < r < 4} we have that

0 = ∆w = R′′Θ + 1
r
R′Θ + 1

r2RΘ′′.

That is, dividing by 1
r2RΘ, and redistributing the terms, we have that

−Θ′′
Θ = r2R

′′

R
+ r

R′

R
= λ ∈ R.
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That is, both sides are constant. We reach the equations

r2R′′(r) + rR′(r)− λR(r) = 0,

for 2 < r < 4, and
Θ′′(θ) + λΘ(θ) = 0,

for −π < θ ≤ π. From the periodicity assumptions, we know that the solution Θ must
fulfil Θ(−π) = Θ(π) and Θ′(−π) = Θ′(π). This directly implies that the solutions for
Θ are of the form

Θn(θ) = αn cos(nθ) + βn sin(nθ),

with λn = n2 and n ≥ 0. We now want to solve the equation for R, to find Rn such
that

r2R′′n(r) + rR′n(r)− n2Rn(r) = 0.

By taking the guess that solutions are of the form rα for some α, we reach that
two possible solutions to the previous equation for n ≥ 1 are rn and r−n (up to
multiplicative constants)1. Thus, we have that the general solution to the previous
equation is given, for n ≥ 1 is given by

Rn(r) = γnr
n + δnr

−n,

for some constants γn and δn. If n = 0, then the general solution is easily obtained to
be

R0(r) = γ0 + δ0 log(r).

Thus, we are looking for a general solution of the form

u(r, θ) = A0 +B0 log(r) +
∑
n≥1

rn(An cos(nθ) +Bn sin(nθ))

+
∑
n≥1

r−n(Cn cos(nθ) +Dn sin(nθ)),

for some constants An, Bn (for n ≥ 0) and Cn, Dn (for n ≥ 1) to be determined.
1That is, if n ≥ 1, we guess that the solution is of the form Rn(r) = Crα for some constant.

Plugging into the equation, this means that

0 = r2R′′n(r) + rR′n(r)− n2Rn(r) = r2α(α− 1)Crα−2 + rαCrα−1 − n2Crα.

Rearranging terms we get that Crα
(
α2 − n2) = 0, which holds if α = ±n. Thus, Crn and

Cr−n are both admissible solutions. A second order linear ODE has a two-dimensional space of
solutions, therefore, our solutions will be linear combinations of rn and r−n .

A similar argument gives the solutions in the case n = 0.
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Notice that, since the point r = 0 is not included in the domain, it makes sense
to consider the negative powers r−n (as well as log(r)) as possible solutions to our
equation. Imposing the boundary conditions, we get that

0 = u(2, θ) = A0 +B0 log(2) +
∑
n≥1

2n(An cos(nθ) +Bn sin(nθ))

+
∑
n≥1

2−n(Cn cos(nθ) +Dn sin(nθ)),

On the other hand,

sin(θ) = u(4, θ) = A0 +B0 log(4) +
∑
n≥1

4n(An cos(nθ) +Bn sin(nθ))

+
∑
n≥1

4−n(Cn cos(nθ) +Dn sin(nθ)),

In particular, A0 +B0 log(2) = A0 +B0 log(4) = 0 so that A0 = B0 = 0. On the other
hand, for n ≥ 2, 2nAn + 2−nCn = 4nAn + 4−nCn = 0, so that An = Cn = 0. Similarly,
if n ≥ 2, Bn = Dn = 0. And to finish, we notice that

2B1 + 2−1D1 = 0, 4B1 + 4−1D1 = 1,

from where we deduce that D1 = −4
3 and B1 = 1

3 . That is, our solution is given by

u(r, θ) = r
sin(θ)

3 − 4 sin(θ)
3r .

Alternative solution: We could directly notice that the boundary values depend
only on sin(θ), in order to find an expression involving only this terms. That is, we
could guess that u(r, θ) is of the form

u(r, θ) = B1r sin(θ) +D1r
−1 sin(θ),

and compute the values of B1 and D1 from the boundary conditions as before. This
gives

u(r, θ) = r
sin(θ)

3 − 4 sin(θ)
3r ,

which fulfils the problem. Moreover, by uniqueness, since u is a solution, is the only
solution.
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13.3. Big on the boundary, small inside

Let Br := {x2 + y2 < r} be the ball centered at the origin with radius r > 0. Find a
harmonic function u : B̄1 → R such that

|u| < 0.00001 in B 1
2

and
∫
∂B1
|u| > 1000 .

Let us consider the polar coordinates (x, y) = (r cos(θ), r sin(θ)). Let u := NrN sin(Nθ),
where N = 1000. The function u is harmonic.

We have ∫
∂B1
|u| = N

∫ 2π

0
| sin(Nθ)| dθ = 4N = 4000 > 1000 .

Moreover, if (x, y) ∈ B 1
2
and (r, θ) is the polar representation of (x, y), then r < 1

2 .
Hence, for (x, y) ∈ B 1

2
, it holds

|u(x, y)| = NrN | sin(Nθ)| ≤ N
1

2N = 1000 · 2−1000 < 0.00001 .
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