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12.1. Necessary condition

Let us consider the following problem for 0 < x, y < π,
∆u = 0, for 0 < x, y < π,

uy(x, π) = x2 − a, for 0 < x < π,
uy(x, 0) = a− x2, for 0 < x < π,

ux(0, y) = ux(π, y) = 0, for 0 < y < π.

Find all the values of a ∈ R for which the problem admits a solution.

Sol. We recall that, since u is harmonic in the square 0 < x, y < π, then, from the
Green identities, in order to have a solution the flux of such solution must be equal to
zero. Namely, if we denote Q our domain, and ∂Q is its boundary, then the problem
will have a solution if ∫

∂Q
∂nu dS = 0,

where ∂nu denotes the outward normal derivative of u. (See equation (7.9) from the
book.)

In this case, we should have

0 =
∫
∂Q
∂nu dS

=
∫ π

0
uy(x, π) dx+

∫ π

0
ux(π, y) dy −

∫ π

0
uy(x, 0) dx−

∫ π

0
ux(0, y) dy

=
∫ π

0
(x2 − a) dx+ 0−

∫ π

0
(a− x2) dx− 0

= 2
∫ π

0
(x2 − a) dx

= 2
3π

3 − 2aπ.

Thus, we must have a = 1
3π

2 for the problem to have a solution. (In fact, once the
problem has a solution, adding any constant gives another solution, so the problem
has infinitely many solutions.)

12.2. Separation of variables

Find the solution to the following problem, posed for 0 < x < 2π and −1 < y < 1.
∆u = 0, for 0 < x < 2π,−1 < y < 1,

u(x,−1) = 0, for 0 ≤ x ≤ 2π,
u(x, 1) = 1 + cos(2x), for 0 ≤ x ≤ 2π,

ux(0, y) = ux(2π, y) = 0, for − 1 < y < 1.
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In order to do that, first find nontrivial solutions w(x, y) = X(x)Y (y) to the following
problem, {

∆w = 0, for 0 < x < 2π,−1 < y < 1,
wx(0, y) = wx(2π, y) = 0, for − 1 < y < 1,

and use them as a basis to generate the solution to the previous problem.

Sol. Let us proceed by separation of variables. Since ∆w = 0, then

X ′′(x)Y (y) +X(x)Y ′′(y) = 0 ⇒ X ′′(x)
X(x) = −Y

′′(y)
Y (y) = −λ,

for some λ ∈ R. Thus, we know

X ′′(x) + λX(x) = 0, for 0 < x < 2π,
Y ′′(y)− λY (y) = 0, for − 1 < y < 1.

On the other hand, from the boundary condition we must have that X ′(0) = X ′(2π) =
0. As it is already standard, the solutions to the eigenvalue problem for X are given
by

Xn(x) = cos
(
nx

2

)
, λn =

(
n

2

)2
,

for n = 0, 1, 2, . . . . Similarly, solving for Y using the values of λn we have just found,
we reach that

Y0(y) = α0y + β0,

and for n ≥ 1,

Yn(y) = αn sinh
(
n(y + 1)

2

)
+ βn sinh

(
n(y − 1)

2

)
.

Notice that we have chosen the basis into which express Yn so that, when trying to
impose the conditions at y = −1, 1, we get a simpler expression. That is, instead of
considering the standard basis given by sinh(ny/2) and cosh(ny/2) we have shifted it
so to make is simpler in the following steps. (See the previous exercise sheet for a
discussion on why this can be done.)

Thus, our solutions wn(x, y) are of the form:

w0(x, y) = α0y + β0,

wn(x, y) = cos
(
nx

2

)(
αn sinh

(
n(y + 1)

2

)
+ βn sinh

(
n(y − 1)

2

))
,
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for n = 1, 2, 3, . . . .

We now use the superposition principle, to say that we are looking for a solution to
our problem of the form

u(x, y) = w0(x, y) + w1(x, y) + w2(x, y) + . . .

= α0y + β0 +
∑
n≥1

cos
(
nx

2

)(
αn sinh

(
n(y + 1)

2

)
+ βn sinh

(
n(y − 1)

2

))
.

Notice that, from the way we have built the functions wn, such solution already
fulfils the Neumann boundary conditions ux(0, y) = ux(2π, y) = 0 for −1 < y < 1.
Moreover, since each wn is harmonic, u is also harmonic. Thus, we just need to impose
the other boundary conditions (the Dirichlet boundary conditions for this problem).
Notice that, the special base we have chosen to express wn, will be extremely useful
in this step. Let us start imposing the boundary condition at y = −1:

u(x,−1) = −α0 + β0 +
∑
n≥1

cos
(
nx

2

)
βn sinh (−n) = 0,

so that, since sinh(−n) 6= 0, we get βn = 0 for all n ≥ 1, and β0 = α0. On the other
hand, imposing the boundary condition at y = 1,

u(x, 1) = α0 + β0 +
∑
n≥1

cos
(
nx

2

)
αn sinh (n) = 1 + cos(2x).

That is, on the one hand we get that α0 + β0 = 1, so that, recalling that α0 = β0
we get that α0 = β0 = 1

2 . For 1 ≤ n 6= 4 we get that αn sinh(n) = 0 (and therefore,
αn = 0 if 1 ≤ n 6= 4), and α4 sinh(4) = 1. That is, α4 = 1

sinh(4) .

Putting all together, we reach that our solution is

u(x, y) = 1
2y + 1

2 + cos(2x)
sinh(4) sinh (2(y + 1)) .

12.3. Neumann problem

Consider the Neumann boundary problem for the Laplace equation for 0 < x, y < π:

∆u = 0, for 0 < x, y < π,
ux(0, y) = 0, for 0 < y < π,
ux(π, y) = sin(y), for 0 < y < π,
uy(x, 0) = 0, for 0 < x < π,
uy(x, π) = − sin(x), for 0 < x < π.
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(a) Show that this problem admits a solution.

Sol. As in exercise 11.1, we need to check that the outward flux of the solution (the
integral of the normal derivative) vanishes:∫

∂Q
∂nu dS =

∫ π

0
uy(x, π) dx+

∫ π

0
ux(π, y) dy −

∫ π

0
uy(x, 0) dx−

∫ π

0
ux(0, y) dy

= −
∫ π

0
sin(x) dx+

∫ π

0
sin(y) dy − 0− 0

= 0.

Hence, the problem admits a solution (infinitely many up to adding a constant).

(b) We now want to split the problem into two different problems such that the
Neumann condition is zero in opposite sides. In order to do that, though, we need
to make sure that the arising problems can still be solved (namely, the outward flux
must be zero).

For that, let us consider the function v = u + a(x2 − y2), for some a ∈ R to be
determined. That is, we have subtracted an harmonic polynomial such that the flow
of the normal derivative in opposite sides is non-zero. What is the problem solved by
v? Write it in terms of the constant a ∈ R.

Sol. Notice that vx(0, y) = ux(0, y) + a(x2 − y2)x|x=0 = 0 + 2ax|x=0 = 0. Similarly,
we have that vx(π, y) = ux(π, y) + 2ax|x=π = sin(y) + 2aπ, vy(x, 0) = 0 and vy(x, π) =
− sin(x)− 2aπ. Thus, v solves the problem

∆v = 0, for 0 < x, y < π,
vx(0, y) = 0, for 0 < y < π,
vx(π, y) = sin(y) + 2aπ, for 0 < y < π,
vy(x, 0) = 0, for 0 < x < π,
vy(x, π) = − sin(x)− 2aπ, for 0 < x < π.

(c) Split the problem for v into two different problems with zero Neumann conditions
on opposite sides of the domain. Determine the value of a ∈ R for which such
problems can be solved.

Sol. We split v = v1 + v2, where v1 and v2 solve the problems

∆(v1) = 0, for 0 < x, y < π,
(v1)x(0, y) = 0, for 0 < y < π,
(v1)x(π, y) = sin(y) + 2aπ, for 0 < y < π,
(v1)y(x, 0) = 0, for 0 < x < π,
(v1)y(x, π) = 0, for 0 < x < π.
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and 

∆(v2) = 0, for 0 < x, y < π,
(v2)x(0, y) = 0, for 0 < y < π,
(v2)x(π, y) = 0, for 0 < y < π,
(v2)y(x, 0) = 0, for 0 < x < π,
(v2)y(x, π) = − sin(x)− 2aπ, for 0 < x < π.

The flux for each problem must be 0. In particular, we must have that for v1,∫ π

0
(sin(y) + 2aπ) dy = 0 ⇒ 2aπ2 = −[− cos(y)]π0 = ⇒ a = −1

π2 .

We get the same result for v2, either by the same computation, or by symmetry.

Thus, each of the previous two problems can be solved if a = −1
π2 .

12.4. Laplace operator and rotations

For any θ ∈ [0, 2π] let Rθ : R2 → R2 be the rotation of the plan by θ radians given by
the matrix

Rθ :=
[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.

(a) Show that the Laplace operator ∆ : u 7→ uxx + uyy is invariant under the change
of variables (s, t) := Rθ · (x, y) in the following sense: expressing u = u(x, y) ∈ C2 in
the varaibles (s, t) as v(s, t) := u(x(s, t), y(s, t)), we have that

∆v(s, t) = vss(s, t) + vtt(s, t) = uxx(x(s, t), y(s, t)) + uyy(x(s, t), y(s, t))
= ∆u(x(s, t), y(s, t)).

Sol. By the relation (s, t) = Rθ · (x, y) we have that (x, y) = R−1
θ · (s, t) = R−θ · (s, t),

obtaining x and y in terms of s and t asx = x(s, t) = cos(θ)s+ sin(θ)t,
y = y(s, t) = − sin(θ)s+ cos(θ)t,

so that v(s, t) = u
(
cos(θ)s + sin(θ)t,− sin(θ)s + cos(θ)t

)
. The exercise reduces to

apply multiple times the chain rule:

vs(s, t) =
(
u
(
x(s, t), y(s, t)

))
s

= ux
(
x(s, t), y(s, t)

)
xs(s, t) + uy

(
x(s, t), y(s, t)

)
ys(s, t)

= (cos(θ)s+ sin(θ)t)sux + (− sin(θ)s+ cos(θ)t)suy
= cos(θ)ux − sin(θ)uy.
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Similarly

vs = cos(θ)ux − sin(θ)uy,
vt = sin(θ)ux + cos(θ)uy,
vss = cos2(θ)uxx − 2 sin(θ) cos(θ)uxy + sin2(θ)uyy,
vtt = sin2(θ)uxx + 2 sin(θ) cos(θ)uxy + cos2(θ)uyy.

It is straightforward that vss + vtt = uxx + uyy.

(b) Use the previous point to conclude that now we are able to solve the Laplace
equation ∆u = 0 in any arbitrary rectangle of R2 with Dirichlet/Neumann boundary
conditions (under the usual compatibility/smoothness assumptions).

Sol. If the rectangular domain has sides mutually parallel to the axis x and y, than
we already developed the tools to solve the Laplace equation in Lectures 11 and 12.
If the rectangle is rotated, it suffices (up to translation) to solve the problem rotating
it back (and the boundary data accordingly), solve it, and then operate the change of
variables of the previous point.
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