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7.1. (Non)homogeneous wave equation

(a) Let u = u(x, t) be a solution of the wave equation


utt − c2uxx = 1, (x, t) ∈ R × (0, ∞),
u(x, 0) = 1, x ∈ R,

ut(x, 0) = 1, x ∈ R,

Compute the explicit solution.

(b) Let u = u(x, t) be a solution of the wave equation


utt − 2uxx = 0, (x, t) ∈ R × (0, ∞),
u(x, 0) = f(x), x ∈ R,

ut(x, 0) = sin(x), x ∈ R,

where f(x) = x, if |x| ≤ 2 and f(x) = 0, if |x| > 2. Is u smooth? Otherwise, where are
the singularities of u? Compute the explicit solution after answering these questions.

SOL: Recall the d’Alembert formula for nonhomogenoeus one dimensional wave
equations:

u(x, t) = f(x + ct) + f(x − ct)
2 + 1

2c

∫ x+ct

x−ct
g(y) dy + 1

2c

∫ t

0

∫ x+c(t−τ)

x−c(t−τ)
F (ξ, t) dξ dτ.

(a) In this case: f = g = F = 1. Hence

u(x, t) = 1 + 2ct

2c
+ 1

2c

∫ t

0
2c(t − τ) dτ

= 1 + t +
∫ t

0
(t − τ) dτ = 1 + t + t2 − t2/2 = 1 + t + t2/2.

(b) Since the functions f and sin(x) are both odd, and the PDE is homogeneous, we
can apply Exercise 6.3, that ensures u to be odd in x ∈ R for any fixed t > 0. The initial
datum has two singularities at x = ±2. Since we know that singularities travel along
characteristics, we have that u is singular along the four lines x ± ct = x ±

√
2t = ±2.
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Apply d’Alembert formula

u(x, t) = f(x +
√

2t) + f(x −
√

2t)
2 + 1

2
√

2

∫ x+
√

2t

x−
√

2t
sin(y) dy

= f(x +
√

2t) + f(x −
√

2t)
2 − cos(x +

√
2t) − cos(x −

√
2t)

2
√

2

= f(x +
√

2t) + f(x −
√

2t)
2 + sin(x) sin(

√
2t)√

2

= sin(x) sin(
√

2t)√
2

+


0, if |x +

√
2t| > 2 and |x −

√
2t| > 2,

x, if |x +
√

2t| ≤ 2 and |x −
√

2t| ≤ 2
x±

√
2t

2 , if |x ±
√

2t| ≤ 2 and |x ∓
√

2t| > 2.

7.2. Propagation of symmetries from initial data, II Consider the general
nonhomogeneous wave equation posed for −∞ < x < ∞ and t > 0,

utt − c2uxx = F (x, t), (x, t) ∈ R × (0, ∞),
u(x, 0) = f(x), x ∈ R,

ut(x, 0) = g(x), x ∈ R.
(1)

Take advantage of the uniqueness Theorem (4.4.6) in the notes to show that

(a) if f , g and F (·, t) are odd/even functions, then u(·, t) is itself odd/even.

(b) if f , g and F (·, t) are periodic with same period T > 0 (i.e. f(x + T ) = f(x),
g(x + T ) = g(x) and F (x + T, t) = F (x, t) for all x ∈ R and t > 0), then u(·, t) is
itself periodic with period T .

SOL:

(a) Take v(x, t) = −u(−x, t). Notice that vt(x, t) = −ut(−x, t), vtt(x, t) = −utt(−x, t)
on the one hand, and vx(x, t) = ux(−x, t), and vxx(x, t) = −uxx(−x, t). Thus,

vtt(x, t) − c2vxx(x, t) = −utt(−x, t) + c2uxx(−x, t) = −F (−x, t) = F (x, t),

where in the last equality we are using that F is spatially odd. Similarly,

v(x, 0) = −u(−x, 0) = −f(−x) = f(x), vt(x, 0) = −ut(−x, 0) = −g(−x) = g(x).

Thus, v satisfies 
vtt − c2vxx = F (x, t), (x, t) ∈ R × (0, ∞),

v(x, 0) = f(x), x ∈ R,
vt(x, 0) = g(x), x ∈ R,
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that is, v and u satisfy the same problem, (1). Since (1) has a unique solution, we
must have v(x, t) = u(x, t) for all x ∈ R, t ≥ 0; that is, −u(−x, t) = u(x, t), u is
spatially odd. If f , g, and F are spatially even (even with respect to x), then u is
also spatially even. (That is, f(−x) = f(x), g(−x) = g(x) and F (−x, t) = F (x, t)
imply u(−x, t) = u(x, t).)

The solution is the same as above, taking v(x, t) = u(−x, t) instead.

(b) If f , g, and F are L-periodic, then u is also L-periodic. (That is, f(x) = f(x+L),
g(x) = g(x + L) and F (x, t) = F (x + L, t), imply u(x, t) = u(x + L, t).)

The solution is the same as above, taking v(x, t) = u(x + L, t) instead.

7.3. Wave equation on a ring Let u : [0, 1] × [0, ∞) → R be a solution of the
wave equation 

utt − uxx = 0, (x, t) ∈ [0, 1] × (0, ∞),
u(x, 0) = x − x2, x ∈ [0, 1],

ut(x, 0) = 0, x ∈ [0, 1] ,
u(0, t) = u(1, t), t ∈ (0, ∞) ,

ux(0, t) = ux(1, t), t ∈ (0, ∞) .

Compute u(1/2, 2022).

SOL: A general consideration: Up to now, the only tool we have to explicitly
compute u is the d’Alembert formula, which can be applied only when the PDE
takes place on the whole real line R. In general one can be interested in solving a
wave equation taking place in a smaller domain D ⊂ R. The trick is the following:
we extend the boundary data of the PDE on the whole line producing an auxiliary
problem that we can solve with d’Alembert. Then, we restrict the computed solution
on D, and we check taking advantage of Exercise 6.3/7.2 that the restriction solves
the original PDE. The way the extension should be operated is suggested by the
additional boundary conditions of the problem. For instance, Exercise 6.6 was solved
in this way. This exercise is another example of this general method.

In this particular case we want to solve the wave equation on [0, 1], and we search for
a PDE on the whole line of the form

vtt − vxx = 0, (x, t) ∈ R × (0, ∞),
v(x, 0) = v0(x), x ∈ R,
vt(x, 0) = 0, x ∈ R ,

(2)

such that setting u(x, t) := v(x, t) for (x, t) ∈ [0, 1] × (0, ∞), u solves the original
problem. The question now is how v0 should be defined. Of course v0(x, t) = x − x2
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for x ∈ [0, 1] since we want that v |[0,1]= u. The additional boundary conditions
u(0, t) = u(1, t) and ux(0, t) = ux(1, t) are imposing the solution to be periodic. The
natural way to define v0 is therefore by periodicity: v0(x) = (x − ⌊x⌋) − (x − ⌊x⌋)2,
where ⌊x⌋ = max{n ∈ Z : 0 ≤ x − n < 1}. This is just a fancy notation for the
natural periodic extension showed in the picture below

x − x2 on [0, 1] v0(x) on R

periodic extension

We know that the solution exists and is periodic (with period 1) as shown in (c)
of the previous exercise. Let u be the restriction of v in the domain [0, 1] × [0, ∞).
Clearly u satisfies the wave equation in the domain and u(x, 0) = v(x, 0) = x − x2

and ut(x, 0) = vt(x, 0) = 0. Moreover, thanks to the periodicity of v, we have

u(0, t) = v(0, t) = v(1, t) = u(1, t) ,

ux(0, t) = vx(0, t) = vx(1, t) = ux(1, t) .

Thus the function u satisfies the PDE given in the statement. With a similar argument
one can also prove that this u is the unique solution (the idea is to define v as the
extension of u and show that it satisfies (2), so that we can invoke the uniqueness for
the classical wave equation).

To compute the value of u(1/2, 2022) we exploit the d’Alembert formula for v:

u(1/2, 2022) = v(1/2, 2022) = 1
2(v0(1/2 − 2022) + v0(1/2 + 2022)) = v0(1/2) = 1/4.

7.4. Multiple choice Cross the correct answer(s).

(a) Let u be solution of the homogeneous wave equation
utt − 9uxx = 0, (x, t) ∈ R × (0, ∞),
u(x, 0) = f(x), x ∈ R,

ut(x, 0) = g(x), x ∈ R.

Let h be a smooth function, and uh be the solution of the above PDE with perturbed
initial condition uh(x, 0) = f(x) and (uh)t(x, 0) = g(x)+h(x). Then, u(1, 2) = uh(1, 2)
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⃝ whenever h has compact support in
[−5, 7]

X whenever
∫ 7

−5 h(x) dx = 0

⃝ only when h constantly equal to zero

X whenever h us equal to zero in [−5, 7]

SOL: We know that in general the value of u(x0, t0) is uniquely determined by the
values of u in the triangle of influence. In the particular case of the homogeneous
wave equation, we can actually say more: looking at the d’Alembert formula, we
see that u(x0, t0) depends uniquely of the value of f on the two points x0 − ct0 and
x0 + ct0, and the integral of g on the interval (x0 − ct0, x0 + ct0).

(b) Same question as (a), but when we perturb uh(x, 0) = f(x) + h(x), (uh)t(x, 0) =
g(x).

⃝ only when h constantly equal to zero

X when h(x) = sin(π(x + 1))

⃝ always for h small enough

X whenever h(−5) = h(7) = 0

SOL: Same reason of question (a).

(c) Let u be solution of the homogeneous wave equation
utt − uxx = F (x), (x, t) ∈ R × (0, ∞),
u(x, 0) = f(x), x ∈ R,

ut(x, 0) = g(x), x ∈ R.

Suppose that F , f and g are trigonometric polynomials as in Exercise 6.2 (b) with∫ 2π
0 g dx = 0. Then, u is

⃝ never

⃝ always

X always for F ≡ 0

⃝ never unless F ̸= f

2π-periodic in time1, that is u(x, t + 2π) = u(x, t) for all (x, t) ∈ R × (0, +∞).

SOL: Observe if

g(x) =
N∑

n=0
bn cos(nx),

then b0 = 1
2π

∫ 2π
0 g(x) dx = 0. Looking at the general solution of Exercise 6.2 (b), we

infer that when F ≡ 0, i.e. the PDE is homogeneous, then for a fixed x ∈ R, u is
periodic in t. Take F ≡ a ∈ R \ {0} as a counter example for all the other points.

1Be careful, this is not the same as being periodic in the x variable, as in Exercise 7.2.
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Extra exercises

7.5. Strange wave equation Show that the following partial differential equation
admits a solution 

utt − uxx = u2
t −u2

x

2u
, (x, t) ∈ R × (0, ∞),

u(x, 0) = x4, x ∈ R,
ut(x, 0) = 0, x ∈ R .

Hint: Consider the function v(x, t) =
√

u(x, t). What equation does it satisfy?

SOL: We assume that u is a solution of the PDE and we compute the derivatives of
v(x, t) :=

√
u(x, t). We have

vt = 1
2u− 1

2 ut ,

vtt = −1
4 u− 3

2 u2
t + 1

2u− 1
2 utt ,

vx = 1
2u− 1

2 ux ,

vxx = −1
4 u− 3

2 u2
x + 1

2u− 1
2 uxx .

Thus, we obtain

vtt − vxx = −1
4 u− 3

2 u2
t + 1

2u− 1
2 utt + 1

4u− 3
2 u2

x − 1
2u− 1

2 uxx

= 1
2u− 1

2 (utt − uxx) − 1
4u− 3

2 (u2
t − u2

x)

= 1
4u− 3

2 (u2
t − u2

x) − 1
4u− 3

2 (u2
t − u2

x) = 0 .

Hence we have proven that v satisfies
vtt − vxx = 0, (x, t) ∈ R × (0, ∞),

v(x, 0) = x2, x ∈ R,
vt(x, 0) = 0, x ∈ R .

(3)

Up to now, we have just noticed that if u is a solution of the original PDE then
√

u
solves the wave equation; but we have never shown the existence of u. In order to do
so, let v(x, t) be the solution of (3) and define u := v2 (our computations justify this
choice). We want to check that u is a solution of the original PDE.
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Thanks to the d’Alembert’s formula we know

v(x, t) = x2 + t2

and therefore
u(x, t) = x4 + t4 + 2x2t2

is our candidate solution. Checking the initial conditions u(x, 0) = x4 and ut(x, 0) = 0
is immediate. Hence, we just have to check whether u solves the equation. We have

utt − uxx = 12t2 + 4x2 − (12x2 + 4t2) = 8(t2 − x2) ,

ut = 4t3 + 4x2t = 4t(x2 + t2) =⇒ u2
t = 16t2u ,

ux = 4x3 + 4tx2 = 4x(x2 + t2) =⇒ u2
x = 16x2u .

Therefore we get

utt − uxx = 8(t2 − x2) = 16t2u − 16x2u

2u
= u2

t − u2
x

2u

which is exactly the desired partial differential equation. Thus we have shown that
u(x, t) = x4 + t4 + 2x2t2 is a solution.
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