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Serie 5 Review

1. Weak solutions
– Not differentiable –> no chain rule

2. Balance laws
– Characteristics are not straight lines anymore.

3. Multiple choice
– An antisymmetric matrix must have zeros on its diagonal.

4. Weak solutions II
– slope 1/c(u0(s)) = 1/e−u0(s) = eu0(s)

5. Finding shock waves
– d

dy
γ(y) = γy(y) = γ′(y)
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Course Overview

• 1st order PDEs
– Quasilinear first order PDEs

▶ Method of characteristics
▶ Conservation laws

• 2nd order PDEs
– Hyperbolic PDEs

▶ Wave equation
▶ D’Alembert formula
▶ Separation of variables

– Parabolic PDEs
▶ Heat equation
▶ Maximum principle
▶ Separation of variables

– Elliptic PDEs
▶ Laplace equation
▶ Maximum principle
▶ Separation of variables
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Wave Equation

The homogeneous wave equation in one (spatial) dimension has the form

utt − c2uxx = 0, x ∈ R, t > 0

c ∈ R is called the wave speed.

Note that x ∈ R, which means that the problem can be thought of as the amplitude of the vibration of
an infinite string.

This is the homogeneous wave equation, i.e. no external force.

If we impose boundary conditions (maybe only looking at [0, L]), then we will have to do some
modifications, such as using the method of Separation of Variables.
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Canonical Form and Change of Variables

ξ(x, t) = x + ct & η(x, t) = x − ct

u(x, t) = w(ξ, η)

ut = wξξt + wηηt & ux = wξξx + wηηx

utt = c2(wξξ − 2wξη + wηη) & uxx = wξξ + 2wξη + wηη

utt − c2uxx = 0 = −4c2wξη
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Canonical Form and Change of Variables

The result from the previous slide:
∂

∂η
wξ = 0

wξ is independent of η
wξ(ξ, η) = f(ξ)

Integrate with respect to ξ, we get

w(ξ, η) = F (ξ) + G(η)
Transform back to the original coordinates

u(x, t) = F (x + ct) + G(x − ct)
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Characteristics of the Wave Equation
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Characteristics of the Wave Equation
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D’Alembert Formula

Cauchy problem for the wave equation:
utt − c2uxx = 0 (x, t) ∈ R × (0, ∞)
u(x, 0) = f(x)
ut(x, 0) = g(x)

We want u(x, t) to have the form F (x + ct) + G(x − ct).

By plugging in the values for t = 0, we could find out what F and G are and thus the general solution.

D’Alembert Formula

u(x, t) = f(x + ct) + f(x − ct)
2 + 1

2c

∫ x+ct

x−ct

g(y) dy

Note: the value of the solution at (x0, t0) is only influenced by the values of f and g in
[x0 − ct0, x0 + ct0]
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Example 1

Let u(x, t) be the solution of the following initial value problem


utt = 4uxx x ∈ R, t > 0
u(x, 0) = f(x) x ∈ R

ut(x, 0) = g(x) x ∈ R

f(x) =
{

3 |x| ≤ 2
0 |x| > 2

g(x) =
{

1 |x| ≤ 2
0 |x| > 2

Find u(1, 1)
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Example 1

Let u(x, t) be the solution of the following initial value problem


utt = 4uxx x ∈ R, t > 0
u(x, 0) = f(x) x ∈ R

ut(x, 0) = g(x) x ∈ R

f(x) =
{

3 |x| ≤ 2
0 |x| > 2

g(x) =
{

1 |x| ≤ 2
0 |x| > 2

Find limt→∞ u(1, t)
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Example 2

Consider the initial value problem with zero boundary condition
utt − uxx = 0 (x, t) ∈ (0, ∞) × (0, ∞)
u(0, t) = 0 t ∈ (0, ∞)
u(x, 0) = x4 x ∈ [0, ∞)
ut(x, 0) = sin(x) x ∈ [0, ∞)

Evaluate u(2, 1) and u(1, 2). In which of the two points ((2, 1) or (1, 2)) is the solution unaffected by
the boundary condition at x = 0?
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Example 2

Consider the initial value problem with zero boundary condition
utt − uxx = 0 (x, t) ∈ (0, ∞) × (0, ∞)
u(0, t) = 0 t ∈ (0, ∞)
u(x, 0) = x4 x ∈ [0, ∞)
ut(x, 0) = sin(x) x ∈ [0, ∞)

The D’Alembrt formula is derived for x ∈ R, we need to modify the problem before applying it.

We should define a new problem on R so that its solution provides the correct result if we just focus on
x ≥ 0.
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Example 2


utt − uxx = 0 (x, t) ∈ (0, ∞) × (0, ∞)
u(0, t) = 0 t ∈ (0, ∞)
u(x, 0) = x4 x ∈ [0, ∞)
ut(x, 0) = sin(x) x ∈ [0, ∞)
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Tips for Serie 6

1. Wave equation
– D’Alembert’s Formula

sin(a + b) + sin(a − b) = 2sin(a)cos(b) & cos(a + b) + cos(a − b) = 2cos(a)cos(b)
2. Wave equation’s anatomy

– (a) Chapter 4.2 in Script: The Cauchy problem and d’Alembert’s formula
– (b) Apply d’Alembert’s formula directly

sin(a + b) + sin(a − b) = 2sin(a)cos(b) & cos(a + b) + cos(a − b) = 2cos(a)cos(b)
3. Propagation of symmetries from initial data

– (a) Chapter 4.5 in Script: Symmetry of the wave equation
– (b) Periodic –> Fourier series, even –> Which terms of the Fourier Series disappear?

4. Multiple choice
–

5. Time reversible
– Check the properties one by one.

6. Zero boundary condition
– Example 2 of today’s exercise.
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Before the next lecture:
1. 3Blue1Brown: But what is a partial differential equation?

https://youtu.be/ly4S0oi3Yz8
2. 3Blue1Brown: Solving the Heat Equation

https://youtu.be/ToIXSwZ1pJU

References:
1. Lecture notes on the course website.
2. “An Introduction to Partial Differential Equations” by Yehuda Pinchover and Jacob Rubinstein
3. NDSU lecture notes

https://youtu.be/ly4S0oi3Yz8
https://youtu.be/ToIXSwZ1pJU
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