

- 1. Serie 4 Review
- 2. Course Overview
- 3. Rankine-Hugoniot Condition and Entropy condition
- 4. Examples
- 5. Classification of linear second order PDEs.
- 6. Tips for Serie 5

1/21

- 1 Serie 4 Review
- 3. Rankine-Hugoniot Condition and Entropy condition
- 4. Examples
- 5. Classification of linear second order PDEs
- 6. Tips for Serie 5

Serie 4 Review

- Conservation laws and critical times.
 - Well done!
- 2. Multiple choice
 - (c) See today's example.
- 3. Weak solutions
 - (b)

$$\int_{x_0}^{x_1} f(x) \, dx \, = \int_{x_0}^0 f(x) \, dx \, + \int_0^{x_1} f(x) \, dx \quad \text{for } x_0 < 0 < x_1$$

3/21

1 Serie 4 Review

2. Course Overview

- 3. Rankine-Hugoniot Condition and Entropy condition
- 4. Examples
- 5. Classification of linear second order PDEs
- 6. Tips for Serie 5

Course Overview

- 1st order PDEs
 - Quasilinear first order PDEs
 - Method of characteristics
 - Conservation laws
- 2nd order PDEs
 - Hyperbolic PDEs
 - ▶ Wave equation
 - ▶ D'Alembert formula
 - Separation of variables
 - Parabolic PDEs
 - Heat equation
 - ► Maximum principle
 - Separation of variables
 - Elliptic PDEs
 - ▶ Laplace equation
 - ► Maximum principle
 - ► Separation of variables

- 1 Serie 4 Review
- 3. Rankine-Hugoniot Condition and Entropy condition
- 4. Examples
- 5. Classification of linear second order PDEs
- 6. Tips for Serie 5

Rankine-Hugoniot Condition and Entropy condition

$$\begin{cases} u_y + uu_x = 0 \\ u(x, y = 0) = 0 & \text{for } x < 0 \\ u(x, y = 0) = 1 & \text{for } x > 0 \end{cases}$$

Rankine-Hugoniot Condition and Entropy condition

Entropy condition

The second law of thermodynamics: in a closed system information is only lost as time y increases, and cannot be created

Characteristics carry with them information on the solution of a first-order PDE.

Therefore the emergence of a characteristic from a shock is interpreted as a creation of information which should be forbidden

$$f'(u^+) < \gamma' < f'(u^-)$$

 $c(u^+) < \gamma' < c(u^-)$

Special case for Burgers' Equation, the shock solution is only valid if $u^- > u^+$.

Graphical Illustration

- 1. Serie 4 Review
- 2. Course Overview
- 3. Rankine-Hugoniot Condition and Entropy condition

4. Examples

- 5. Classification of linear second order PDEs
- 6. Tips for Serie 5

$$\begin{cases} u_y + u^2 u_x = 0 \\ u(x, y = 0) = 1 & \text{for } x \le 0 \\ u(x, y = 0) = \sqrt{1 - x} & \text{for } 0 < x < 1 \\ u(x, y = 0) = 0 & \text{for } x \ge 1 \end{cases}$$

$$\begin{cases} u_y + u^2 u_x = 0 \\ u(x, y = 0) = 1 & \text{for } x \le 0 \\ u(x, y = 0) = \sqrt{1 - x} & \text{for } 0 < x < 1 \\ u(x, y = 0) = 0 & \text{for } x \ge 1 \end{cases}$$

$$\begin{cases} u_y + u^2 u_x = 0 \\ u(x, y = 0) = 1 & \text{for } x \le 0 \\ u(x, y = 0) = \sqrt{1 - x} & \text{for } 0 < x < 1 \\ u(x, y = 0) = 0 & \text{for } x \ge 1 \end{cases}$$

$$\begin{cases} u_y + u^2 u_x = 0 \\ u(x, y = 0) = 1 & \text{for } x < 0 \\ u(x, y = 0) = 3 & \text{for } x > 0 \end{cases}$$

Determine the characteristics inside the regions:

$$x < y$$
 and $x > 9y$

$$\begin{cases} u_y + u^2 u_x = 0 \\ u(x, y = 0) = 1 & \text{for } x < 0 \\ u(x, y = 0) = 3 & \text{for } x > 0 \end{cases}$$

Verify that the following are weak solutions:

$$u_1(x,y) = \begin{cases} 1 & \text{for } x < \frac{7}{3}y \\ 2 & \text{for } \frac{7}{3}y < x < 4y \\ \sqrt{\frac{x}{y}} & \text{for } 4y < x < 9y \\ 3 & \text{for } x > 9y \end{cases}$$

$$u_2(x,y) = \begin{cases} 1 & \text{for } x < y \\ \sqrt{\frac{x}{y}} & \text{for } y < x < 9y \\ 3 & \text{for } x > 9y \end{cases}$$

$$\begin{cases} u_y + u^2 u_x = 0 \\ u(x, y = 0) = 1 & \text{for } x < 0 \\ u(x, y = 0) = 3 & \text{for } x > 0 \end{cases}$$

Verify that the following are weak solutions:

$$u_1(x,y) = \begin{cases} 1 & \text{for } x < \frac{7}{3}y \\ 2 & \text{for } \frac{7}{3}y < x < 4y \\ \sqrt{\frac{x}{y}} & \text{for } 4y < x < 9y \\ 3 & \text{for } x > 9y \end{cases}$$

$$u_2(x,y) = \begin{cases} 1 & \text{for } x < y \\ \sqrt{\frac{x}{y}} & \text{for } y < x < 9y \\ 3 & \text{for } x > 9y \end{cases}$$

Which solution satisfies the entropy condition?

- 1. Serie 4 Review
- 2. Course Overview
- 3. Rankine-Hugoniot Condition and Entropy condition
- 4. Examples
- 5. Classification of linear second order PDEs
- 6. Tips for Serie 5

Frame Title

A General linear second-order PDE in two independent variables has the form:

$$L[u] = au_{xx} + 2bu_{xy} + cu_{yy} + du_x + eu_y + fu = g$$

The discriminant:

$$\delta(L)(x_0, y_0) := b^2(x_0, y_0) - a(x_0, y_0)c(x_0, y_0)$$

 $\delta(L)(x_0,y_0) > 0$: hyperbolic

$$\delta(L)(x_0,y_0)=0$$
: parabolic

$$\delta(L)(x_0,y_0)<0$$
: elliptic

- 1. Serie 4 Review
- 3. Rankine-Hugoniot Condition and Entropy condition
- 4. Examples
- 5. Classification of linear second order PDEs
- 6. Tips for Serie 5

Tips for Serie 5

- Weak solutions
 - (a) Remember the chain rule.
 - (b) Check the Rankie-Hugoniot condition. What did we do wrong? When can we apply the chain rule?
- 2 Balance laws
 - (a) Write u(x, y) as some terms plus the integral of q.
 - (b) Check the form of the characteristics.
- 3. Multiple choice
 - Check the definition in the script.
- Weak solutions II.
 - (b) Check the two inequalities of the entropy condition separately.
- 5. Finding shock waves
 - Done in the exercise session.

References:

- 1. Lecture notes on the course website.
- 2. "An Introduction to Partial Differential Equations" by Yehuda Pinchover and Jacob Rubinstein
- 3. "Analysis in Mechanical Engineering" by Leon van Dommelen
- 4. Standford math220a handouts