

- 1. Serie 3 Review
- 2. Course Overview
- 3. Conservation Laws
- 4. Shock Formation and Critical time
- 5. Weak solution and Rankine-Hugoniot Condition
- 6. Tips for Serie 4

- 1. Serie 3 Review
- 3 Conservation Laws
- 4. Shock Formation and Critical time
- 5. Weak solution and Rankine-Hugoniot Condition
- 6. Tips for Serie 4

Serie 3 Review

- Characteristic method and initial conditions
 - Always check if the solution fits the initial curve.
- 2. Method of characteristic, local and global existence
 - Well done
- 3. Multiple choice

$$-\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

- $\Gamma(s) = (a\cos(s), b\sin(s), u(t=0, s))$

- 4. Characteristic method and transversality condition
 - Show that w is constant along the characteristic curves.
 - $-\frac{\partial}{\partial t}w=0$

- 1. Serie 3 Review
- 2. Course Overview
- 3. Conservation Laws
- 4. Shock Formation and Critical time
- 5. Weak solution and Rankine-Hugoniot Condition
- 6. Tips for Serie 4

Course Overview

- 1st order PDFs
 - Quasilinear first order PDEs
 - Method of characteristics
 - Conservation laws
- 2nd order PDFs
 - Hyperbolic PDEs
 - ▶ Wave equation
 - ▶ D'Alembert formula
 - Separation of variables
 - Parabolic PDEs
 - Heat equation
 - ► Maximum principle
 - Separation of variables
 - Elliptic PDEs
 - ► Laplace equation
 - ► Maximum principle
 - Separation of variables

- 1 Serie 3 Review
- 3 Conservation Laws
- 4. Shock Formation and Critical time
- 5. Weak solution and Rankine-Hugoniot Condition
- 6. Tips for Serie 4

Motivation for Conservation laws: Traffic Flow Problem [Extra]

Let u(x,t) be the density of cars at point x, time t.

Therefore, the total number of cars between points x_1 and x_2 at time t can be represented by:

$$\int_{x_1}^{x_2} u(x,t) \, dx$$

The rate of change in the number of cars between points x_1 and x_2 at time t is given by

$$\frac{\partial}{\partial t} \int_{x_1}^{x_2} u(x,t) dx = f(u(x_1,t)) - f(u(x_2,t))$$

where *f* represents the flow rate onto and off the street.

$$\int_{x_1}^{x_2} u_t(x,t) dx = f(u(x_1,t)) - f(u(x_2,t))$$

and, therefore

$$\frac{\int_{x_1}^{x_2} u_t(x,t) dx}{x_2 - x_1} = \frac{f(u(x_1,t)) - f(u(x_2,t))}{x_2 - x_1}$$

Taking the limit as $x2 \rightarrow x1$, we get

$$u_t = -[f(u)]_x$$

General Formulation for Conservation laws

We use x as a spatial variable and y as a temporal variable, so y>0. We look for $u(x,y): \mathbb{R} \times [0,\infty) \to \mathbb{R}$ such that

$$u_y + \frac{\partial}{\partial x}f(u) = 0$$

$$u_y + c(u)u_x = 0$$

We often have the initial condition at y (time) = 0, i.e. u(x, y = 0) = h(x).

Examples

Transport equation:

$$u_y + cu_x = 0$$

Burgers' equation:

$$u_y + uu_x = 0$$

Derivation of Burgers Equation [Extra]

Consider a one-dimensional medium of particles moving along a line by inertia, so that the velocity of each particle remains constant.

We denote the velocity of the particle at the point x at time t by u(t,x).

We then write Newton's equation: the acceleration of the particle equals zero.

If $x = \varphi(t)$ is the motion of a particle, then

$$\dot{\varphi} = u(t, \varphi(t)), \ddot{\varphi} = \frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} \dot{\varphi} = \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x}$$

Thus the velocity field of a medium consisting of non-interacting particles satisfies the quasi-linear equation

$$u_t + uu_x = 0$$

Conservation laws

These types of problems PDEs can be solved with the method of characteristics since they are 1st order Quaslinear PDEs.

Properties of conservation laws:

Solutions of conservation laws are constant along their characteristics, which are straight lines.

For each $s \in \mathbb{R}$ the characteristic through a point (s,0) is the line in the (x,y) plane going through (s,0) with slope $1/c(u_0(s))$ and on this line u is equal to the constant $u_0(s)$.

Graphical Illustrations

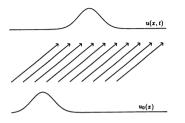


Figure 3.1. Characteristics and solution for the advection equation.

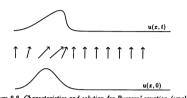


Figure 3.3. Characteristics and solution for Burgers' equation (small t).

- 1. Serie 3 Review
- 2. Course Overview
- 3. Conservation Laws
- 4. Shock Formation and Critical time
- 5. Weak solution and Rankine-Hugoniot Condition
- 6. Tips for Serie 4

Shock Formation

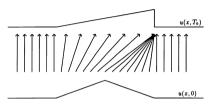
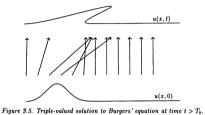


Figure 3.4. Shock formation in Burgers' equation.



Critical Time

If $c(u_0(s))_s < 0$, then there exists a time when the characteristics cross.

Faster characteristics "catch up" slower characteristics.

If $c(u_0(s))$ is never decreasing, there are no singularities.

Example

$$\begin{cases} u_y + uu_x = 0\\ u(x, y = 0) = arctan(x) \end{cases}$$

$$\begin{cases} u_y + uu_x = 0 \\ u(x, y = 0) = 1 & for \ x < -\pi/2 \\ u(x, y = 0) = -\sin(x) \ for \ |x| \le \pi/2 \\ u(x, y = 0) = -1 & for \ x > \pi/2 \end{cases}$$

- 1 Serie 3 Review
- 3 Conservation Laws
- 4. Shock Formation and Critical time
- 5. Weak solution and Rankine-Hugoniot Condition
- 6. Tips for Serie 4

Weak solution and Rankine-Hugoniot Condition

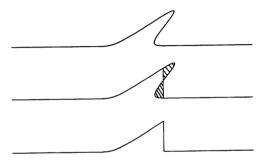
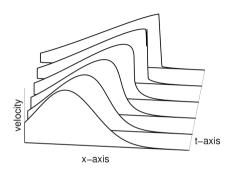
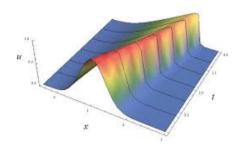


Figure 3.13. Equal area rule for shock location.

$$\int_{a}^{b} u(x, y_{2}) dx - \int_{a}^{b} u(x, y_{1}) dx$$
$$= - \int_{a}^{b} [f(u(b, y)) - f(u(a, y))] dy$$

Illustrations





Example

$$\begin{cases} u_y + u^2 u_x = 0 \\ u(x, y = 0) = 3 \text{ for } x < 0 \\ u(x, y = 0) = 1 \text{ for } x > 0 \end{cases}$$

- 1 Serie 3 Review
- 3 Conservation Laws
- 4. Shock Formation and Critical time
- 5. Weak solution and Rankine-Hugoniot Condition
- 6. Tips for Serie 4

Tips for Serie 4

- 1. Conservation laws and critical times
 - (a) See Exercise example
 - (b) Change of Variables: $s^2 = \tau$
 - (c) Shock or no shock?
- 2. Multiple Choice
 - (c) Critical time and characteristics
- 3. Weak solutions
 - Check the definition in the script.

Additional Reading:

http://www.clawpack.org/riemann_book/html/Burgers.html

References:

- 1. Lecture notes on the course website.
- 2. "An Introduction to Partial Differential Equations" by Yehuda Pinchover and Jacob Rubinstein
- 3. "Burgers equation" by Mikel Landajuela
- "Numerical Methods for Conservation Laws, Lectures in Mathematics, ETH-Zurich" by Randall J. LeVeque
- 5. "Ordinary Differential Equations" by Vladimir I. Arnol'd
- 6. "The shocking behaviour of moving fluids" by Antoine Nectoux.
- 7. Standford math220a handouts