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Serie 3 Review

1. Characteristic method and initial conditions
– Always check if the solution fits the initial curve.

2. Method of characteristic, local and global existence
– Well done

3. Multiple choice

– x2

a2 + y2

b2 = 1
– Γ(s) = (acos(s), bsin(s), u(t = 0, s))

4. Characteristic method and transversality condition
– Show that w is constant along the characteristic curves.
– ∂

∂t
w = 0
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Course Overview

• 1st order PDEs
– Quasilinear first order PDEs

▶ Method of characteristics
▶ Conservation laws

• 2nd order PDEs
– Hyperbolic PDEs

▶ Wave equation
▶ D’Alembert formula
▶ Separation of variables

– Parabolic PDEs
▶ Heat equation
▶ Maximum principle
▶ Separation of variables

– Elliptic PDEs
▶ Laplace equation
▶ Maximum principle
▶ Separation of variables

D-MATH
Analysis 3 21.10.2022 5/21



Outline

1. Serie 3 Review

2. Course Overview

3. Conservation Laws

4. Shock Formation and Critical time

5. Weak solution and Rankine-Hugoniot Condition

6. Tips for Serie 4

D-MATH
Analysis 3 21.10.2022 6/21



Motivation for Conservation laws: Traffic Flow Problem [Extra]

Let u(x, t) be the density of cars at point x, time t.
Therefore, the total number of cars between points x1 and x2 at time t can be represented by:∫ x2

x1

u(x, t) dx

The rate of change in the number of cars between points x1 and x2 at time t is given by
∂

∂t

∫ x2

x1

u(x, t) dx = f(u(x1, t)) − f(u(x2, t))

where f represents the flow rate onto and off the street.∫ x2

x1

ut(x, t) dx = f(u(x1, t)) − f(u(x2, t))

and, therefore ∫ x2
x1

ut(x, t) dx

x2 − x1
= f(u(x1, t)) − f(u(x2, t))

x2 − x1
Taking the limit as x2 → x1, we get

ut = −[f(u)]x
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General Formulation for Conservation laws

We use x as a spatial variable and y as a temporal variable, so y > 0.
We look for u(x, y) : R × [0, ∞) → R such that

uy + ∂

∂x
f(u) = 0

uy + c(u)ux = 0
We often have the initial condition at y (time) = 0, i.e. u(x, y = 0) = h(x).

Examples
Transport equation:
uy + cux = 0

Burgers’ equation:
uy + uux = 0
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Derivation of Burgers Equation [Extra]

Consider a one-dimensional medium of particles moving along a line by inertia, so that the velocity of
each particle remains constant.

We denote the velocity of the particle at the point x at time t by u(t, x).

We then write Newton’s equation: the acceleration of the particle equals zero.

If x = φ(t) is the motion of a particle, then

φ̇ = u(t, φ(t)), φ̈ = ∂u

∂t
+ ∂u

∂x
φ̇ = ∂u

∂t
+ u

∂u

∂x

Thus the velocity field of a medium consisting of non-interacting particles satisfies the quasi-linear
equation

ut + uux = 0
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Conservation laws

These types of problems PDEs can be solved with the method of characteristics since they are 1st
order Quaslinear PDEs.

Properties of conservation laws:
Solutions of conservation laws are constant along their characteristics, which are straight lines.

For each s ∈ R the characteristic through a point (s, 0) is the line in the (x, y) plane going through
(s, 0) with slope 1/c(u0(s)) and on this line u is equal to the constant u0(s).
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Graphical Illustrations
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Shock Formation
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Critical Time

If c(u0(s))s < 0, then there exists a time when the characteristics cross.

Faster characteristics “catch up” slower characteristics.

If c(u0(s)) is never decreasing, there are no singularities.
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Example

{
uy + uux = 0
u(x, y = 0) = arctan(x)


uy + uux = 0
u(x, y = 0) = 1 for x < −π/2
u(x, y = 0) = −sin(x) for |x| ≤ π/2
u(x, y = 0) = −1 for x > π/2
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Weak solution and Rankine-Hugoniot Condition

∫ b

a

u(x, y2) dx −
∫ b

a

u(x, y1) dx

= −
∫ b

a

[f(u(b, y)) − f(u(a, y))] dy
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Illustrations
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Example


uy + u2ux = 0
u(x, y = 0) = 3 for x < 0
u(x, y = 0) = 1 for x > 0
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Tips for Serie 4

1. Conservation laws and critical times
– (a) See Exercise example
– (b) Change of Variables: s2 = τ
– (c) Shock or no shock?

2. Multiple Choice
– (c) Critical time and characteristics

3. Weak solutions
– Check the definition in the script.
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Additional Reading:

http://www.clawpack.org/riemann_book/html/Burgers.html
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