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Serie 3 Review

1. Characteristic method and initial conditions
– Always check if the solution fits the initial curve.

2. Method of characteristic, local and global existence
– Well done

3. Multiple choice

– x2

a2 + y2

b2 = 1
– �(s) = (acos(s), bsin(s), u(t = 0, s))

4. Characteristic method and transversality condition
– Show that w is constant along the characteristic curves.
– ˆ

ˆt w = 0
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Course Overview
• 1st order PDEs

– Quasilinear first order PDEs
I Method of characteristics
I Conservation laws

• 2nd order PDEs
– Hyperbolic PDEs

I Wave equation
I D’Alembert formula
I Separation of variables

– Parabolic PDEs
I Heat equation
I Maximum principle
I Separation of variables

– Elliptic PDEs
I Laplace equation
I Maximum principle
I Separation of variables
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Motivation for Conservation laws: Tra�c Flow Problem [Extra]

Let u(x, t) be the density of cars at point x, time t.
Therefore, the total number of cars between points x1 and x2 at time t can be represented by:

⁄ x2

x1

u(x, t) dx

The rate of change in the number of cars between points x1 and x2 at time t is given by
ˆ
ˆt

⁄ x2

x1

u(x, t) dx = f(u(x1, t)) ≠ f(u(x2, t))

where f represents the flow rate onto and o� the street.
⁄ x2

x1

ut(x, t) dx = f(u(x1, t)) ≠ f(u(x2, t))

and, therefore s x2
x1

ut(x, t) dx

x2 ≠ x1
= f(u(x1, t)) ≠ f(u(x2, t))

x2 ≠ x1
Taking the limit as x2 æ x1, we get

ut = ≠[f(u)]x
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General Formulation for Conservation laws

We use x as a spatial variable and y as a temporal variable, so y > 0.
We look for u(x, y) : R ◊ [0, Œ) æ R such that

uy + ˆ
ˆx

f(u) = 0

uy + c(u)ux = 0
We often have the initial condition at y (time) = 0, i.e. u(x, y = 0) = h(x).

Examples
Transport equation:
uy + cux = 0

Burgers’ equation:
uy + uux = 0
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Derivation of Burgers Equation [Extra]

Consider a one-dimensional medium of particles moving along a line by inertia, so that the velocity of
each particle remains constant.

We denote the velocity of the particle at the point x at time t by u(t, x).

We then write Newton’s equation: the acceleration of the particle equals zero.

If x = Ï(t) is the motion of a particle, then

Ï̇ = u(t, Ï(t)), Ï̈ = ˆu
ˆt

+ ˆu
ˆx

Ï̇ = ˆu
ˆt

+ u
ˆu
ˆx

Thus the velocity field of a medium consisting of non-interacting particles satisfies the quasi-linear
equation

ut + uux = 0
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Conservation laws

These types of problems PDEs can be solved with the method of characteristics since they are 1st
order Quaslinear PDEs.

Properties of conservation laws:
Solutions of conservation laws are constant along their characteristics, which are straight lines.

For each s œ R the characteristic through a point (s, 0) is the line in the (x, y) plane going through
(s, 0) with slope 1/c(u0(s)) and on this line u is equal to the constant u0(s).
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Graphical Illustrations
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Shock Formation
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Critical Time

If c(u0(s))s < 0, then there exists a time when the characteristics cross.

Faster characteristics “catch up” slower characteristics.

If c(u0(s)) is never decreasing, there are no singularities.
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Example

;
uy + uux = 0
u(x, y = 0) = arctan(x)

Y
__]

__[

uy + uux = 0
u(x, y = 0) = 1 for x < ≠fi/2
u(x, y = 0) = ≠sin(x) for |x| Æ fi/2
u(x, y = 0) = ≠1 for x > fi/2
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Weak solution and Rankine-Hugoniot Condition

⁄ b

a

u(x, y2) dx ≠
⁄ b

a

u(x, y1) dx

= ≠
⁄ b

a

[f(u(b, y)) ≠ f(u(a, y))] dy
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Illustrations
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Example
Y
]

[

uy + u2ux = 0
u(x, y = 0) = 3 for x < 0
u(x, y = 0) = 1 for x > 0
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Tips for Serie 4

1. Conservation laws and critical times
– (a) See Exercise example
– (b) Change of Variables: s2 = ·
– (c) Shock or no shock?

2. Multiple Choice
– (c) Critical time and characteristics

3. Weak solutions
– Check the definition in the script.
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Additional Reading:

http://www.clawpack.org/riemann_book/html/Burgers.html
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