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1. Serie 11 Review
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Serie 11 Review

1. Separation of variables for elliptic equations

- (a)
- (b)

2. Heat Equation

The comparison principle for solutions of the heat equation: If v and v are two solutions of
the heat equation, and u < v for the initial and boundary condition, then u < v everywhere.
Prove:

Consider w = u — v.

By linearity w satisfies the heat equation, and w < 0 on the parabolic boundary.

By the weak maximum principle, w < 0 everywhere, thus u < v everywhere.

3. Uniqueness of solutions
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2. Course Overview
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Course Overview

e st order PDEs

— Quasilinear first order PDEs
» Method of characteristics
» Conservation laws

® 2nd order PDEs

— Hyperbolic PDEs

» Wave equation

» D’Alembert formula

» Separation of variables
— Parabolic PDEs

» Heat equation

» Maximum principle

» Separation of variables
— Elliptic PDEs

» Laplace equation

» Maximum principle

» Separation of variables
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3. Compeatibility condition
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Compatibility condition
Laplace’s Equation with Dirichlet boundary condition

yu yn yn
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Figure 7.4 Separation of variables in rectangles.

We assumed last time that the compatibility condition holds.
f(e) = f(d) = g(c) = g(d) = h(a) = h(b) = k(a) = k(b) =0

The uniqueness theorem guarantees that u = u1 + u2 is a unique solution.
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Compatibility condition

Laplace’s Equation with Dirichlet boundary condition

When we split the problem for « into two problems for u; and w2, the boundary data may not be
continuous anymore, even if they are continuous in the original problem.

We therefore present a method for transforming a Dirichlet problem with continuous boundary data
that does not satisfy the compatibility condition into another Dirichlet problem that does satisfy the
condition.

Au=0 inR Au=0 inR

u=f in{a} x[cd] a=f in{a}x][cd
u=g in{b} x[cd] u=g in{b} xcd]
wu=nh infab] x {d} a=~h infa,b] x {d}
u=k infa,b] x {c} a=k ina,b] x{c}

i=u—P, f=f—P, g=g—P, h=h—P, k=k—P
P(z,y) := ao + a1z + a2y + asxy

Note that u is still harmonic since P is harmonic, we can choose coefficients ag, a1, az2,a3 € R to
ensure that the compatibility condition is fulfilled.
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Laplace’s Equation with Dirichlet boundary condition
Example 1

Au=0 in [0,1] x [0,1]
u(z,0) =1+sin(nz) for0 <z <1,
u(z,1) =2 for0<z<1
u(0,y) =14y foro<y<1
u(ly)=1+y for0<y<1
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Laplace’s Equation with Dirichlet boundary condition

Example 1
Au=0 in [0,1] x [0, 1]
u(z,0) = 1+sin(mz) for0 <z <1,
u(z,1) =2 for0<z<1
u(0,y) =14y foro<y<1
u(l,y)=1+y foro0 <y <1
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Compatibility condition

Laplace’s Equation with Neumann boundary condition

Recall the necessary condition for the existence of a solution to the Neumann problem:

Au = p(z,y) (z,y) € D
8vu(m7y) = g(x,y) (m’y) c oD f\ g(x(s)7y(s)) ds = / p($7y) diUdy
oD D
heat flux through the boundary = heat generated in the domain
Laplace’s equation in a rectangular domain with Neumann boundary conditions

Au=0 inR v

uz = f on{a} xcd] dho W=t
uz =g on{b} x[cd] wef| o Mu=ofuss
us =k onla,b] x {d} T e

ug =h ona,b] x {c}

Figure 8.3: Neumann problem in a rectangular domain.

[ fsefofr=fon [an-
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Compatibility condition

Laplace’s Equation with Neumann boundary condition

To solve the problem we need to split v = u1 + us in the sum of two problems as we did for the
Dirichlet problem. Hence w1, uz satisfy

Au; =0
(ur)e = f
(ur1)e =g
(u1)y =0
(u1)y =0

in R

on {a} x [c,d]
on {b} x [c,d]
on [a,b] x {d}
on [a,b] x {c}

Auz =0

(ug)z =0
(’u,z)z =0
(u2)y =k
(u2)y = h

in R

on {a} x [c,d]
on {b} x [¢,d]
on [a,b] x {d}
on [a,b] x {c}

Note that, by splitting the problem, the existence condition for the Neumann problem might not be

satisfied anymore for u; and us.

To overcome this problem, we use the trick of adding a harmonic polynomial «(z? — 4?) for some

a€eR.

This yields the new harmonic function v = u + a(z? — y?).
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Compatibility condition
Laplace’s Equation with Neumann boundary condition

If we now split v = v1 + v, as we did above for u, then the problem for v; and v, are

Avy =0 in R Avo =0 inR
(v1)s = f+2aa on{a} X [c,d] (v2)s =0 on {a} x [c,d]
(v1)e =g+ 2ab on {b} X [c,d] (v2)s =0 on {b} x [c,d]
(v1)y =0 on [a,b] x {d} (v2)y =k —2ad on[a,b] x {d}
(v1)y =0 on [a,b] x {c} (v2)y = h —2ac onJa,b] x {c}
The compatibility condition for v, The compatibility condition for v
d d b b
/(g+2ab)—/(f+2aa):0 /(k—?ad)—/(h—Qac):O
1 ¢ 1 b
az?(b—a)(d—c)/c(f_g) az?(b—a)(d—c)/a(k_h)
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Laplace’s Equation with Neumann boundary condition

Example 2
Au=0 in [0,7] x [0, ]
ug(0,9) =0 on0<y<m
ua(my) =sin(y) oNO<y<nm
Uy (z,0) =0 on0<z<mw
uy(z,m) = —sin(z) on0<z <
ETHzirich Feoli

16.12.2022  14/23



Laplace’s Equation with Neumann boundary condition

Example 2
Au=0 in [0,7] x [0, ]
ug(0,9) =0 on0<y<m
ua(my) =sin(y) oNO<y<nm
Uy (z,0) =0 on0<z<mw
uy(z,m) = —sin(z) on0<z <
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4. Laplace’s equation on circular domains

ETHzirich 2%, 16122022 16/23



Laplace’s equation on circular domains

Let B, be a disk of radius a around the origin, the Dirichlet problem is:
{Au—O (z,y) € Ba
u(z,y) = g(z,y) (z,y) € 9Ba
It is convenient to solve the equation in polar coordinates
w(r,0) = u(z(r,0),y(r,0))
_ 0, P
T 0x2 | Oy?
Aw_lg(raﬂ) i&_@+laﬂ+ia27w
ror \ or r2. 002  Or2  ror 12 002

Au

Wy + twy + Zpwge =0 0<r<a, 0<6<2m
w(a,0) = h(9) = g(z(a,d),y(a,0)) r=a, 0<6<2rm
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Laplace’s equation on circular domains

w(r,0) = R(r)©(0)

R'(r)6(6) + 1 R (1)0(0) + 5 R(r)6"(6) = 0

r*R"(r) + rR'(r) o e ()

I T N
Solve ODE for ©(0) first
") =-X6(9)
0(0) =0(2n)

e’'(0) =0o'(2n)

0,.(0) = A, cos(nf) + By, sin(nd) for A\, =n’, n=0,1,2,...
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Laplace’s equation on circular domains

Then solve the ODE for R(r) together with the eigenvalue )\, = n?:
TQRZ + TR, — n’R, =0

Ru(r) =Cnr™ + Dpr ™™, n=1,2,3,...

Ro(r) = Co+Doln(r) n=0
G + Dur™ #0

However, the fucntion »~™ and In(r) are singular at 0 inside the domain D, so we discard them.

Thus the general solution is given by:

=Co+ Z [Arn cos(nb) + By sin(nf)]
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Laplace’s equation on circular domains
Example 3

Au(r,0) =0 0<r<R,0<6<2r
u(R,0) =sin*(20) 0<6< I,
u(R,0) =0 5 <0< 3,

u(R,0) =sin?(20) 32F <6 < 2m,

Evaluate (0, 0) without solving the PDE.
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Laplace’s equation on circular domains

Example 3
Au(r,0) =0 0<r<R,0<6<2r s
u(R,0) =sin*(20) 0<6< I, o
U(R,Q)ZO g§0<g, 02
u(R,0) =sin?(20) 32F <6 < 2m, #%%Qo

Show that the inequality 0 < u(r,8) < 1 holds at each point (r, §) in the disk.
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5. Tips for Serie 12

ETHziirich Poayie s 16.12.2022  22/23



Tips for Serie 12

1. Separation of variables for elliptic equations

— Compatibility condition for Laplace’s equation with Neumann boundary condition.
— Use the correct direction to integrate.

2. Separation of variables

— Solve the homogeneous direction at first.
— Then proceed with the other direction.
— Case studies according to the eigenvalues.

3. Neumann problem
— Consult example 2.
4. Laplace operator and rotations

— Express z and y in terms of s and ¢.
— Calculate Av(s, t) using the chain rule.
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Self-promotion:

Teaching Assistant for Introduction to Machine Learning from D-INFK next semester
Instructor: Prof. Dr. Andreas Krause and Prof. Dr. Fan Yang

The course introduces the foundations of learning and making predictions from data.

References:
1. Lecture notes on the course website.

2. “An Introduction to Partial Differential Equations” by Yehuda Pinchover and Jacob Rubinstein
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