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Serie 9 Review

1. Separation of variables for non-homogeneous problems
– (a) You could also solve it by finding a particular solution.
– (b) Non-homogeneous boundary condition –> subtract

2. Conservation of energy
– (b) w(x, t) := u(x, t) + F (x) with F ÕÕ(x) = f(x) solves the homogeneous wave equation

3. Multiple choice
– (a) k > 1

4. Extra exercises
–
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Course Overview
• 1st order PDEs

– Quasilinear first order PDEs
I Method of characteristics
I Conservation laws

• 2nd order PDEs
– Hyperbolic PDEs

I Wave equation
I D’Alembert formula
I Separation of variables

– Parabolic PDEs
I Heat equation
I Maximum principle
I Separation of variables

– Elliptic PDEs
I Laplace equation
I Maximum principle
I Separation of variables
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From Gauss’ Law to Poisson’s and Laplace’s Equations

Gauss’ Law:
ÒĘ = 1

‘0
fl

The electric field can be written as the gradient of a scalar potential.

Ę = ≠ÒV

Poisson’s Equation:
Ò2V = ≠ 1

‘0
fl

In regions where there is no charge, Poisson’s equation reduces to Laplace’s equation.

�V = 0
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Laplace’s Equation in One Dimension

Suppose V depends on only one variable x. Then Laplace’s equation becomes

d2V
dx2 = 0

The general solution is a straight line.
V (x) = mx + b

Notice:

1. V (x) is the average of V (x + a) and V (x ≠ a), for any a:

V (x) = 1
2 [V (x + a) + V (x ≠ a)]

Laplace’s equation is a kind of averaging instruction; it tells you to assign to the point x the average of
the values to the left and to the right of x.

2. Laplace’s equation tolerates no local maxima or minima; extreme values of V must occur at the end
points. Actually, this is a consequence of (1), for if there were a local maximum, V would be greater at
that point than on either side, and therefore could not be the average.
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Laplace’s Equation in Two Dimensions

If V depends on two variables, Laplace’s equation becomes

ˆ2V
ˆx2 + ˆ2V

ˆy2 = 0

Picture a thin rubber sheet stretched over a box.
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Laplace’s Equation in Two Dimensions

The height of the tightly stretched rubber membrane satisfies Laplace’s Equation.

The one-dimensional analog would be a rubber band stretched between two points, which forms a
straight line.

Same properties as in one dimension:

1. The value of V at a point (x, y) is the average of those around the point.

V (x, y) = 1
2fiR

j
V ds

2. V has no local maxima or minima; all extrema occur at the boundaries.
There are no hills, no valleys, just the smoothest conceivable surface.

D-MATH
Analysis 3 02.12.2022 11/28



Laplace’s Equation in Two Dimensions

If you put a ping-pong ball on the stretched rubber sheet, it will roll over to one side and fall o�.

It will not find a "pocket" somewhere to settle into, for Laplace’s equation allows no such dents in the
surface.

From a geometrical point of view, just as a straight line is the shortest distance between two points, so
a harmonic function in two dimensions minimizes the surface area spanning the given boundary line.
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Poisson’s Equation and boundary conditions

Let D œ R2 an open set and let ˆD be the boundary of D.

Dirichlet problem for Poisson’s Equation;
�u(x, y) = fl(x, y), (x, y) œ D

u(x, y) = g(x, y), (x, y) œ ˆD

Neumann problem for Poisson’s Equation;
�u(x, y) = fl(x, y), (x, y) œ D

ˆ‹u(x, y) = g(x, y), (x, y) œ ˆD
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Poisson’s Equation and boundary conditions

A necessary condition for the existence of a solution to the Neumann problem is
⁄

ˆD

g(x(s), y(s)) ds =
⁄

D

fl(x, y) dx dy

Proof:
�u = Ò · Òu

Therefore we can write Poisson’s Equation as
Ò · Òu = fl

Integrating both sides of the equation over D
⁄

D

Ò · Òu =
⁄

D

fl

Use Gauss’ theorem: ⁄

ˆD

Òu =
⁄

D

fl

Therefore: ⁄

ˆD

g =
⁄

D

fl
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Laplace's/Poisson's equation
describes steady-state/equilibrium

heat flux throughthe boundary
-heat generation inside

the domain



Laplace’s Equation and harmonic functions

If fl = 0, then Poisson’s equation reduces to Laplace’s equation, and the condition becomes:
⁄

ˆD

ˆnu =
⁄

D

Ò · Òu =
⁄

D

�u = 0

Recall:

A holomorphic function is a complex-valued function that is complex-di�erentiable (satisfies the
Cauchy-Riemann equations) in a neighborhood.

Every holomorphic function can be separated into its real and imaginary parts

f(x + iy) = u(x, y) + iv(x, y),

and each of these is a harmonic function on R2

�u = �v = 0

.
D-MATH
Analysis 3 02.12.2022 16/28



Outline

1. Serie 9 Review

2. Course Overview

3. From Gauss’ Law to Poisson’s and Laplace’s Equations

4. The Intuition behind Laplace’s Equation

5. Poisson’s and Laplace’s Equation and boundary conditions

6. Maximum Principles

7. Tips for Serie 10

D-MATH
Analysis 3 02.12.2022 17/28



The weak maximum principle

Let D be a bounded domain and let u(x, y) œ C2(D) fl C(D̄) be a harmonic function in D.

Then the maximum of u in D̄ is achieved on the boundary ˆD, namely

max
D̄

u = max
ˆD

u

D-MATH
Analysis 3 02.12.2022 18/28



The uniqueness of the Dirichlet Problem
Example 1

Given a bounded domain D œ R2.

Prove that the Dirichlet problem has at most one solution u(x, y) œ C2(D) fl C(D̄).
;

�u(x, y) = fl(x, y), (x, y) œ D

u(x, y) = g(x, y), (x, y) œ ˆD
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Assume by contradiction, that there exist two solutions Me, U2.
Then c0:= H1-he solves

↓ OW
=0Ul-wUz =p(x,y) -p(x,y) =0 in D

v =(1- xz =g(x,y) -g(x,y) =0 onED

w is harmonic in D, and vanishes on CD.

From the weak maximumprinciple, the maximum and minimum of t are zero,
which implies NEO and thus ULEUz.



Mean value Principle

Consider a harmonic function u on D and let BR(x0, y0) be a ball of radius R. Then

u(x0, y0) = 1
2fiR

j

ˆBR(x0,y0)
u(x(s), y(s)) ds

= 1
2fi

⁄ 2fi

0
u(x0 + R cos(◊), y0 + R sin(◊)) d◊
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Mean value principle
Example 2

Let u : D æ R be a solution to Poisson’s equation
;

�u = 1, in D

u = x2 + 2y2 ≠ 1, on ˆD

where D = {x2 + y2 < 1}.

Compute u(0, 0).

Hint: consider the function v(x, y) = u(x, y) ≠ y2

2
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d.os701+ *sin)-Ido
- cosTal+sinTOl-Itsinolde

Nv =ox- d() =1- 1 =0 in D frosiniodoIu =x+2yz1-=x+y1ontD
vis harmonic in D, apply mean valueprinciple x(0,0) =u(0,0) - 5/y=0:F
N(0,01= eERON(x(s),ycsUlds=ENCcoscol,sincolld



Mean value principle
Example 2

Let u : D æ R be a solution to Poisson’s equation
;

�u = 1, in D

u = x2 + 2y2 ≠ 1, on ˆD

where D = {x2 + y2 < 1}.

What is the maximum of u?

Hint: Consider the function w(x, y) = u(x, y) + 1≠x2≠y2

4 , and note that w is harmonic, w Ø u in D,
and w = u on ˆD.
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From the weak maximum principle:
maxmaxu<Mw =Ma*W= 8DU

Since x+y = 1 on CD

man= mg,x=mBax(x+2y- 1)= ma(x+y-z) +y =ma,y== 1



Strong Maximum principle

Let u be a harmonic function in D, an open connected subset of R2.
If u attains its maximum (or its minimum) at an interior point of D, then u is constant.

Proof:
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Strong Maximum principle
Proof

Assume by contradiction that u obtains its maximum at some interior point q0.

Let q ”= q0 be an arbitrary point in D.

Consider a disk B0 around q0.

Since the average of a set cannot be greater than all the objects of the set, we infer that u is constant
in B0.

It follows that u also reaches its maximal value at q1.

Thus we obtain that u is constant also in B1.

We continue in this way until we reach a disk that includes that point q.

We conclude u(q) = u(q0), and since q is arbitrary, it follows that u is constant in D.
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Strong Maximum principle
Example 3

Let u : D æ R be a solution to the Laplace equation
;

�u = 0, in D

u = g, on ˆD

where D = {x2 + y2 < 1} and g satisfies g Ø xy.

Prove that u( 1
2 , 1

4 ) Ø 1
8 .

Hint: note that w = xy is harmonic.
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v: = x-xy
v(,E1 =0

2ΔV
=

cx- x(xy) =0 inD u(E,() - xy)x =E,y= =0

v = x-xy
=

g-xYon2D u(,)z.t=
Since N=g-xy10 on ED,
we deduce that 50 inD.
(



Strong Maximum principle
Example 3

Let u : D æ R be a solution to the Laplace equation
;

�u = 0, in D

u = g, on ˆD

where D = {x2 + y2 < 1} and g satisfies g Ø xy.

Assume that u( 1
2 , 1

4 ) = 1
8 . Prove that g(0, 1) = 0.
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The assumption u(,(l- implies that the
harmonic function - attains

its minimumat ()CD.
Hence, by the strong maximum principle,

I is constant, therefore N=0

This is equivalent to saying that nexy, and therefore g=xy
In particular gl0.1)=0
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Tips for Serie 10

1. Unique solution
– Use the hint that v = u1 ≠ u2.
– If there were a maximum or minimum in D, what does it imply to �v?

2. The mean-value principle

1
fiR2

⁄

BR((x¶,y¶))
u(x, y) dx dy = 1

fiR2

⁄ R

0

⁄ 2fi

0
u(x¶ + r cos ◊, y¶ + r sin ◊)r d◊ dr

3. Maximum principle
– (a) Consult Example 2.
– (b) w = u ≠ 3x + y

4. Multiple choice
– (a) The necessary condition for the existence of a solution to the Neumann problem
– (b) Weak maximum principle.

5. Weak maximum principle
– add w with �w = 0.

D-MATH
Analysis 3 02.12.2022 28/28



Peers found helpful:
1. https://youtu.be/-D4GDdxJrpg
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