Exercises Institute for Machine learning
Introduction to Machine Learnmg Dept. of Computer Science, ETH Ziirich

Spring 2023 Prof. Dr. Andreas Krause, Prof. Dr. Fanny Yang

Homework 3 For questions, please refer to Moodle.

Released on 3 April 2023
(Neural Networks)

GENERAL INSTRUCTIONS

® Submission of solutions is not mandatory but solving the exercises are highly recommended.
The master solution will be released next week.

® Part of the exercises are available on Moodle as a quiz. These problems are marked with [/].

Exercise 1: Neural Network Learns Boolean Functions

Consider the following neural network with one hidden layer and no bias. The neural network uses the
ReLU activation function for the hidden layer, and mean squared error loss. The weights are initialized as
follows:

We denote x = (A,B)T, z = WWx, v = (n1,ny)T = 0(z), out = W@, where ¢ is the ReLU activation
function.

(@) [/]What are weight matrices of layers 1 (W(l)) and 2 (W(Z))?

; WO — (—11 _11), W — (1 1)
2.

W) = G _D w® = (1 1)
3.

W _ <—11 _11>, W — G)
4.

-t 2w

Solution:

(b) []Calculate the forward propagation for the inputs:
* x1=(AB)T=(00)T
e x2=(AB)T =017
* x3=(AB)T =(1,0)T
A,B)T = (1,1)T
What Boolean function does this neural network compute?
1. AND
2. OR
3. XOR
4. NAND

Ox4:(,

Solution:
out = Wo(Wwhz)

Or in scalar notation:
out =0(—A+B)+0(A—-B)

A B Network
o o o
o 1 1
1 0 1
1 1 0
The network computes the XOR of A and B.

@)
11

. AL o
(c) [/]What is poik
c 1

.nl

.nz

)
)

y —out) - np
)

Solution: %%

oL oJL dout

2) ' 2

aW1(1 dout awll)
_ Ay —out)* B(Wl(%)nl + Wl(g)nz)

dout awl(f)

=2(out —y)-m

. oL
(d) [V]What is ~2%;2

Page 2 of 9

Solution:

JoL JL dout ony; 0Jz7

awl(;) ~ dout 9ny 9z1 W_E)
3y —out)? dWm +W3'na) do(z1) a(Wiy'A+Wi)'B)

dout ony 021 WS)

=2(out —y) - Wl(%) ~U’(W1(%)A + Wl(;)B) * B

(e) [«]Now, provide weights that implements the logical OR function Y = x1 V x. Assume the weights

can only take values -1, o, or 1.

1.
Wi e R? = (0 _1>, W2 e R = (1 1)

-1 1
2.
Wl e R?*2 = <_11 (1)) W2 e R™*2 = (1 1)
3.
W(l) c]R2><2 _ (01 11)) W(Z) c]R1><2 _ (1 1)
4.
W ¢ R2X2 — (j é) W@ e R¥2 = (1 1)
Solution:
W(l) (= RZXZ = (_11 (1)> P W(Z) = IR1><2 = (1 1)
A B Network
0o o 0
o 1 1
1 0 1
1 1 1

Exercise 22 MLP vs CNN

You just took a picture which has 1920 * 1080 pixels. Each pixel has a red, blue, and green value. You
would like to design a neural network for this image.

(@) []Calculate the number of parameters needed for a multilayer perceptron (MLP) that has only one

hidden layer of 256 nodes and an output layer of 10 nodes.

Solution: From input to hidden:

#MLP — 1920 % 1080 * 3 * 256 + 256 = 1'592/525'056

input =

From hidden to output:
#outmut = 256 % 10 410 = 2570

Page 3 of 9

The total number of parameters is the sum of both:

#MLP — yMLP 4 yMLP — 1/592/525'056 + 2570 = 1'592/527'626 ~ 1.6 * 10°

inpu output —

(b) [v/INow you would like to use a convolutional neural network (CNN). The network has 10 layers, each
layer has 64 4 x 4 filters for EACH channel. Calculate the number of parameters needed for this CNN.

Solution: The first layer receives 3 channels from the input (the RGB channels of the picture) and
outputs 64 channels. There are 64 filters, each of the dimension 4 x4 x 3.

#%.]r\gt\’: (4%4%3+1)*64 =23136

The rest g layers receive 64 channels (the output from the previous layer) and output 64 channels.
There are 64 filters, each of the dimension 4 * 4 x 64.

#ONN — (44564 +1) 64 = 65600

rest

The total number of parameters is

H#ONN — 4NN |9, 4NN _ 503'536

first rest

Note this is independent of the input size of the picture.

() [w/INow consider a simple CNN with only one layer and one 4 x 4 filter per channel. What dimen-
sions do the outputs of this layer have, if we choose a stride of 2 and apply 2-pixel padding to the input?

Solution: 1920 x 1080 * 3 convolved with 4 x 4 x 3 results in

1920 + 2 x padding — filter 1080 + 2 * padding — filter
- +1)x* - +1
stride stride
_ 1920—i—2>|<2—4_|_1 . 1080—#2*2—4_’_1
2 2
= 961 x 541

(d) Prove that there exists a fully connected linear layer of input size and output size that is functionally
equivalent to the described convolutional network.

Solution:

Let the input images have size L, X L, and the output Loyt X Iout. Also, let’s say there are d
input channels xy, ..., x4 and n output channels £y, ..., f5. The convolutional filters ajj, ..., aj, and
bias b; correspond to the i—th output channel. Also, consider that each filter has dimension
m x m. The idea is to translate both the output and input layers from images to a large flattened
vector where each image pixel corresponds to an entry of the flattened vector. Let x be the vector
corresponding to the input and f the vector of the output. The dimension of x is d times the input
image dimension and f is n times the output image dimension. Then the convolutional layer can
be written equivalently as a fully connected linear layer:

f=Ax+b

Page 4 of 9

where the i—th row of A consists of zeros and some coefficients corresponding to the convolutional
filters that are carefully chosen. In particular, the entry of f corresponding to the j—th pixel of i—th
channel has everywhere zeros except the specific positions where it takes the values ajy, ..., aiq.
Those positions are chosen depending on the padding and stride of the convolution and the output
pixel j. Also, the bias vector b is constructed by consecutively repeating the bias b; as many times
as the output image dimension, foralli =1, ..., n.

One could also provide a non-constructive proof by simply saying that the convolutional layer is a
linear mapping and all linear mappings can be described as linear layers.

X1 an £
alk sum

A4 by

Cil £
X !

X4 /

ank sum

(e) Deduce that the family of functions written as convolutional layers is a subset of those written as fully
connected linear layers.

Solution: On our previous statement we proved that every convolutional layer can be written
equivalently as a fully connected linear layer. In essence, that means that every function that can
be expressed with a convolutional layer, can also be expressed with a linear layer.

Linear layers might be more expressive which means that they can approximate more complicated
functions. However, in practice they have many more parameters than the convolutional layers
which make them harder to train. On the other hand the convolutional filters can be very useful
when it comes to feature extraction of images as they operate like pattern matching detectors,
which means that they can detect common patterns in images.

Of course, it is important to mention that there is no rule that convolutional layers always perform
better, as it always depend on the application we want to implement.

Page 5 of 9

Exercise 3: Activation Functions

Take a look at the graphs of 4 activation functions and their derivatives:

1.0 1

0.8 1

0.6 1

0.4 1

0.2 1

0.0

—— tanh
—-=—=~ gradient

1.0 A e
/

—— sigmoid

—=-=~ gradient
0.5 1

0.0 ————=t----=

—-0.51

—————————— -1.01
-75 -50 -25 00 25 50 7.5 -75 -50 -25 00 25 50 7.5

(a) sigmoid (b) tanh

8.

— relu —— identity
6 —=—=~ gradient 5+ === gradient
41 0 J S A A A
2_

5

0_

-75 =50 -25 0.0 25 5.0 7.5 -75 =50 -25 0.0 2.5 5.0 7.5

(c) relu (d) identity

(@) [+/]Which activation function(s) are more prone to vanishing gradients?

1. sigmoid
2. tanh

3. ReLU
4. identity

Solution: (a) sigmoid and (b) tanh

Their derivatives tend to become very small for large and small inputs. This can cause gradients to
vanish during backpropagation, as the product of many small derivatives can lead to a gradient
that is too small to be useful for training.

(b) [&/]Which activation function(s) are differentiable?

1. sigmoid
2. tanh
3. ReLU
4. identity

Solution: All of them are differentiable apart from (c) ReLU, which is not differentiable at x=o.
The sigmoid function and the tanh function are both differentiable everywhere, as they are both
smooth and continuous functions. The identity function, is also differentiable everywhere with a
derivative of 1.

The ReLU function is differentiable everywhere except at exactly o, where its derivative is unde-
fined. However, in practice, the ReLU function is treated as if it has a derivative of o at exactly o
during backpropagation.

Page 6 of 9

(c) [/]Which activation function(s) are non-linear?
1. sigmoid
2. tanh
3. ReLU
4. identity

Solution: (a) sigmoid, (b) tanh, and (c) ReLU
The sigmoid and tanh functions are both smooth, S-shaped curves that are non-linear.
The ReLU function is a piecewise linear function, which is also non-linear. The identity function,

which simply returns the input value as its output, is a linear function.

(d) [«]Which activation function(s) are zero-centered?
1. sigmoid
2. tanh
3. ReLU
4. identity

Solution: (b) tanh and (d) identity
The term "zero-centered" means that the output of the activation function has a mean of zero when

the input is zero-mean (i.e., the mean of the input is zero). This is important for training neural
networks with techniques that rely on having zero-centered data, such as batch normalization.
The sigmoid and ReLU functions are not zero-centered. The output of the sigmoid function ranges
from o to 1, with the midpoint being at o.5. Similarly, the output of the ReLU function is always
positive and starts at o for negative inputs.

(e) [«!]The figure below displays a training dataset and the learned function of 3 different neural networks
that are trained on the dataset. The dataset consists of 100 scalar input-output pairs. All neural
networks have one hidden layer with 20 units but differ in the choice of the activation function that are
either the sigmoid, ReLu or identity function. Match the learned output function with the activation
function that is used in the corresponding neural network.

Dataset A B C
2.0 ~
15 #.
1.0 - o %
LAl % .
0.5 ‘ L
NEFSEEE
> ™ . ‘.. :" - . \
-0.5 e o¥
—10 * '“';:. nd :
1. (A, B, C) = (sigmoid, ReLU, identity)
2. (A, B, C) = (ReLU, identity, sigmoid)
3. (A, B, C) = (identity, ReLU, sigmoid)
4. (A, B, C) = (identity, sigmoid, ReLU)

Page 7 of 9

Solution: (A, B, C) = (identity, ReLU, sigmoid)

With only the identity function, the network can not learn any non-linear relationship, thus
network A uses the identity function. Network C has a smoother output function compared to B,
which means that network C uses sigmoid and B uses ReLU.

Exercise 4: Gradient Descent

Recall the following Gradient Descent Methods:
(Batch) Gradient Descent: uses all examples in the training data.
Stochastic Gradient Descent: uses one randomly chosen example.

Mark the following as (T)rue or (F)alse:

Batch Gradient Descent is suited for large number of training

O
data. True M False

(@) [v1]

Solution: Batch Gradient Descent computes the gradient of the cost function with respect to the
model parameters using the entire training set at once, and then takes a step in the direction of the
negative gradient to update the parameters.

While Batch Gradient Descent can be effective for small datasets or problems with simple models,
it is often not well-suited for large datasets due to its high computational cost. Computing the
gradient over the entire training set can become very slow and memory-intensive for large datasets,
making it impractical or infeasible to use.

Batch Gradient Descent gives the global optimal solution

O
given sufficient time. True M False

(b) [v1]

Solution: Batch Gradient Descent can converge to the global optimal solution of the cost function,
given sufficient time and under certain conditions, such as the cost function being convex and the
learning rate being properly chosen. However, in general and especially for large datasets and
complex models, the cost function is non-convex.

(c) [/l Stochastic Gradient Descent tends to escape local minima. H True O False

Solution: Stochastic Gradient Descent (SGD) has a higher likelihood of escaping local minima
compared to Batch Gradient Descent. This is because SGD updates the model parameters more
frequently using small batches of randomly sampled training examples. These random samples
introduce noise into the update process, which can cause the optimization process to jump out of
local minima and move toward the global minimum.

Stochastic Gradient Descent reaches convergence faster than

Batch Gradient Descent. W True O False

(d) [v1]

Page 8 of 9

Solution: Stochastic Gradient Descent (SGD) generally reaches convergence faster than Batch
Gradient Descent, especially for large datasets. This is because SGD updates the model parameters
more frequently using small batches of randomly sampled training examples, which allows it to
make progress more quickly toward the optimal solution.

Batch Gradient Descent is faster and less computationally
expensive.

(e) [v1] OTrue M False

Solution: Batch Gradient Descent is generally slower and more computationally expensive than
Stochastic Gradient Descent (SGD) because it requires computing the gradients on the entire
training set at each iteration. This can be especially problematic for large datasets or complex
models, where each iteration can be very slow and memory-intensive.

In contrast, SGD only requires computing the gradients on a small subset of the training set at
each iteration, which can be much faster and more memory-efficient.

Page 9 of 9

	Neural Network Learns Boolean Functions
	MLP vs CNN
	Activation Functions
	Gradient Descent

